文章编号:0253-2239(2001)06-0757-05

Er³⁺单掺及 Yb³⁺/Er³⁺双掺 LaLiP₄O₁₂玻璃 光谱性质研究

张 龙 林凤英 祁长鸿 胡和方

(中国科学院上海光学精密机械研究所,上海 201800)

摘要: 制备了 Er^{3+} 单掺杂及 Yb^{3+}/Er^{3+} 双掺杂四磷酸盐玻璃 测量了吸收光谱、荧光光谱 ,用 McCumber 理论计算 Er^{3+} 的发射截面 ,研究了其荧光特性、浓度猝灭及其机制、以及 OH 基对荧光强度和能量传递的影响 ,研究发现对 四磷酸盐玻璃 Yb^{3+} 的最佳浓度约为 1.82×10^{21} ions/cm³ , Er^{3+} 最佳浓度约为 0.96×10^{20} ions/cm³ 。

关键词: Er³⁺ 单掺;Yb³⁺/Er³⁺ 掺杂;四磷酸盐玻璃;光谱性质

中图分类号:TQ171.1⁺12 文献标识码:A

1 引 言

Er³⁺和 Yb³⁺/Er³⁺掺杂材料可作为在第三通信 窗口及眼睛安全区域的激光增益介质,多年来一直 受到人们的重视^[1]。近年来,Er³⁺和 Yb³⁺/Er³⁺掺 杂玻璃作为 1.5 μm 微片激光器和光波导放大器基 质材料受到了极大的关注^[2~8]。它为许多重要的应 用提供了可能,如高比特长距离光纤通信、激光雷 达、激光测距、相干光学传输等方面^[5,6]。Er³⁺离子 能级结构对 1.5 μm 光放大而言是一个三能级系 统 这就要求较高的抽运速率以使粒子数反转,另 外 Er³⁺在970 nm 处较低的吸收截面也限制了其抽 运吸收效率。Yb³⁺离子在970 nm 附近有很强的吸 收,并且 Yb³⁺发射(${}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2}$)与 Er³⁺吸收(${}^{4}I_{15/2}$ → ${}^{4}I_{11/2}$)在光谱上有很大重叠,保证了从 Yb³⁺ 到 Er³⁺有较高的能量传递效率^[1]。

作为微片激光器或光波导放大器的工作物质, 其基质玻璃中必须含有足够高的稀土离子浓度以使 在很短的激活长度范围内对激发光有高的吸收并获 得足够高的增益^[3,7],但高浓度的稀土离子往往会 引起玻璃失透析晶以及强烈的浓度猝灭。稀土四磷 酸盐玻璃(LaLiP₄O₁₂),由于其高浓度、低猝灭、高增 益、低阈值等特点,作为小型化固体激光器的理想基 质材料得到了相当的重视和研究^[9]。同时由于其较 大的声子能量也增加⁴ $I_{11/2} \rightarrow$ ⁴ $I_{13/2}$ 弛豫几率,阻碍 Er³⁺到 Yb³⁺反向能量传递的进行,提高 1.5 μ m 发 射量子效率。因此,四磷酸盐玻璃是理想的 Er³⁺及 Yb³⁺/Er³⁺掺杂基质玻璃材料。系统研究 Er³⁺及 Yb³⁺/Er³⁺掺杂四磷酸盐玻璃的光学光谱性质对发 展 $1.5 \ \mu m$ 激光玻璃的理论和现实应用都有重要意 义。

2 实 验

2.1 样品制备

实验中玻璃样品的基本化学组成为 LiEr_xYb_yL_{$R_{1-x-y}</sub>P₄O₁₂,实验中所用的原料都为化$ 学纯以上氧化物及碳酸盐,Er₂O₃、Yb₂O₃ 是分析纯原料。将由上述原料组成的 50g 玻璃配合料充分混合装入铂金坩埚内,放置 1100 °C ~ 1250 °C 硅碳棒电炉中熔制,同时向玻璃液中通氧气以减少玻璃中OH 基含量。熔制 90 min 后,在铝模上浇注成型,接着在玻璃化转变温度 Tg 附近退火 60 min,随后随炉冷却至室温。为了研究最优化的掺杂浓度以及能量传递过程,制备了含有不同 Er³⁺及 Yb³⁺浓度的样品。除用于红外测试的样品加工成 20 mm×15 mm×1 mm,用于其它光学测试的玻璃样品都加工成20 mm×15 mm×3 mm,两大面抛光。</sub>

2.2 光谱性能测试

光谱测试在常温下进行。吸收光谱、发射光谱 分别在 Lambda 9 UV/VIS/NIR 型、HITACHI330 型 光谱仪上测定。发射光谱所用抽运源为 InGaAs 激 光二极管,抽运波长为 970 nm,单色仪为国产 WDG30型,光电倍增管是 R940-02型,荧光信号由 XWT-264型记录仪记录。测定荧光寿命时,将抽运 源脉冲频率调到 25 Hz,测量时激发位置离样品边 缘 1 mm,以尽量降低发射光自吸收的影响。记录 仪显示荧光衰减曲线,可直接读出荧光寿命。

样品红外光谱用 HITACHI-270-50 型红外光谱 仪测定,测试范围为 400 cm⁻¹~4000 cm⁻¹。密度 及折射率用常规方法测得。

3 结果和讨论

3.1 Er₂O₃、Yb₂O₃ 溶解性

测量了 LiEr_xLa_{(1-x}) P₄O₁₂ 玻璃 $4I_{15/2} \rightarrow {}^{4}I_{13/2}$ (Er³⁺)和 LiYb_xLa_{(1-x}) P₄O₁₂ 玻璃 ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$ (Yb³⁺)跃迁积分吸收强度分别随 Er³⁺和 Yb³⁺浓度 的变化,这是一种分析稀土离子在玻璃中溶解性能 的简单有效方法^{10]}。如图 1 所示,积分吸收强度随 Er³⁺或 Yb³⁺浓度的变化表现了很好的线性关系,仅 当 Yb³⁺为 2.4×10²¹ ions/cm³ 后有稍微的偏离,这 说明 Er³⁺及 Yb³⁺在 LiLaP₄O₁₂玻璃中有很好的溶 解性能。

- Fig. 1 The relationship of the magnitudes of integrated absorption for the ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ (Er³⁺) and ${}^{2}F_{7/2} \rightarrow {}^{2}F_{5/2}$ (Yb³⁺) transitions with the Er³⁺ and Yb³⁺ and Yb³⁺ contents in LiEr_x L_{4(1-x)} P₄O₁₂ and LiYb_x L_{4(1-x)} P₄O₁₂ glasses, respectively
- 3.2 吸收截面 $\sigma_{\alpha}(\lambda)$ 和发射截面 $\sigma_{\alpha}(\lambda)$

 Er^{3+} 离子 ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ 跃迁吸收截面直接从测量的吸收谱中计算得到:

$$\sigma_{a} = \frac{2.303 \lg (I_{0}/I)}{NL}, \quad (1)$$

这里 lg(*I*₀/*I*)为吸收率(*I*₀ 为入射光强 ,*I* 为通过长 度为 *L* 的介质后的光强),*N* 为 Er³⁺ 离子浓度(单位 为 ions/cm³)。

发射截面按 McCumber 理论计算得到¹¹¹。按 照 McCumber 理论 吸收截面与发射截面有如下关 系:

$$\sigma_{\rm e}(\nu) = \sigma_{\rm a}(\nu) \exp\left[\frac{\varepsilon - h\nu}{kT}\right], \qquad (2)$$

这里, ν 为光子频率; ϵ 为与温度有关的激发能量, 按照 Miniscalco 等人^[12]的方法从吸收和荧光光谱中 确定,对于四磷酸盐玻璃中 Er^{3+} 离子⁴ $I_{13/2} \rightarrow {}^{4}I_{15/2}$, 我们计算得到 $\epsilon = 6550 \text{ cm}^{-1}$;h 为普朗克(Planck) 常数;k 为玻尔兹曼常数。图 2 给出了 Er^{3+} 在四磷 酸盐玻璃中 ${}^{4}I_{15/2} \rightarrow {}^{4}I_{13/2}$ 的吸收及发射截面,在 1.54 μ m处 σ_a 和 σ_e 分别为 0.40 pm² 和 0.48 pm²。 同时我们也使用倒易法^[13]计算了其发射截面,从图 2 可以看出,用 McCumber 理论和倒易法计算的结 果是相当一致的。

Fig. 2 The absorption and emission cross-section of $${\rm Er}^{3^+}$$ in $LiLaP_4O_{12}$ glass$

3.3 Er³⁺/Yb³⁺体系能量传递

图 3 表示了 Yb³⁺/Er³⁺ 体系的简单能级结构 图 ,在 970 nm 激发下, Yb³⁺ 到 Er³⁺ 的能量传递 (ET),即

Yt(${}^{2}F_{5/2}$)+Er(${}^{4}I_{15/2}$)→Yt(${}^{2}F_{7/2}$)+Er(${}^{4}I_{11/2}$) 实际上起到间接抽运 Er^{3+} 离子到 ${}^{4}I_{11/2}$ 能级的作用, 因此此能量传递的效率对 Yb³⁺/Er³⁺体系来说是非 常重要的。

在 Yb³⁺/Er³⁺ 体系中,由于 Yb³⁺ 离子²F_{5/2} → ²F_{7/2}发射与 Er³⁺ 离子⁴ I_{15/2}→4I_{11/2}吸收存在很大的 光谱重叠,以及 Er³⁺ 离子⁴ I_{11/2}能级短的寿命,从而 保证了在 Yb³⁺/Er³⁺ 体系中 Yb³⁺→Er³⁺ 有很高的 正向能量传递效率。能量传递效率 η 可表示为^[8]:

$$\eta = 1 - \tau_{
m Yb} / \tau_{
m Yb}^0$$
 , (3)

这里 τ_{Yb} 和 τ_{Yb}^{0} 分别为掺有和未掺有 Er^{3+} 时所测得 的 Yb^{3+} 离子² $F_{5/2}$ 能级寿命。

我们计算了 $LiEr_{0.025}$ Yb_y $La_{(0.0975-y)}P_4O_{12}$ 玻璃 Yb³⁺ → Er^{3+} 的正向能量传递效率 ,结果如图 4 所 示。可以看出 Yb³⁺ 到 Er^{3+} 的能量传递效率是相当 高的 ,而且随 Yb³⁺ 浓度的增加 ,传递效率 η 也增加 (y = 0.45 时 , η 为 95%)。这是因为随 Yb³⁺ 浓度的 增加 ,Yb³⁺ - Er^{3+} 间距离减小 ,它们间相互作用也就 增强。

Fig. 3 Energy level diagram of the erbium-ytterbium system. The solid-line arrows refer to radiative phenomena, the dash-line arrows refer to energy transfer (ET) process

- Fig. 4 The dependence of the efficiency of energy transfer from Yb^{3+} to Er^{3+} in $LiEr_{0.025} Yb_y La_{(0.975-y)}P_4O_{12}$ glasses on Yb^{3+} concentration
- 3.4 Er³⁺ 和 Er³⁺/Yb³⁺ 掺杂玻璃荧光特性

在 970 nm 激光二极管激发下,在 Er^{3+} 及 Yb^{3+} / Er^{3+} 掺杂玻璃样品中可以观察到位于 1.54 μ m 附 近的⁴ $I_{13/2} \rightarrow {}^{4}I_{15/2}$ 荧光发射。如图 5 所示, Yb^{3+} / Er^{3+} 样品的 1.54 μ m 荧光强度比 Er^{3+} 单掺样品要 强得多。

 Yb^{3+} 在 970 nm 处有很强的吸收,其吸收截面 比 Er^{3+} 离子要大得多,如图 6 所示。同时, Yb^{3+} 离 子的两能级结构也使得 Yb^{3+} 离子一般不易产生浓 度猝灭,所以在玻璃中作为敏化剂 Yb^{3+} 离子的浓度 往往比 Er^{3+} 离子要高的多。因此相比于 Er^{3+} 单掺, Yb³⁺/Er³⁺体系有着高得多的抽运吸收效率。而且 从上一节可知,Yb³⁺→Er³⁺的正向能量传递效率非 常高。由于这些原因,Yb³⁺ 敏化作用下,能量传递 ²*F*_{5/2}(Yb³⁺)+⁴*I*_{15/2}(Er³⁺)→²*F*_{7/2}(Yb³⁺)+⁴*I*_{11/2} (Er³⁺)的作用将远强于 Er³⁺的基态吸收⁴*I*_{15/2}→ ⁴*I*_{11/2}的作用。因此 Yb³⁺/Er³⁺ 双掺样品⁴*I*_{13/2}→ ⁴*I*_{15/2}跃迁荧光强度比 Er³⁺ 单掺样品要强得多。

Fig. 6 Absorption cross section spectrum for ${\rm Yb}^{3+}$ and ${\rm Er}^{3+}$ at 970 nm band

为了理解⁴ $I_{13/2} \rightarrow {}^{4} I_{15/2}$ 跃迁荧光强度与离子浓 度之间的关系,分别画出了荧光强度与 Er^{3+} 及 Yb^{3+} 离子浓度间的关系,如图7和图8所示,光滑的曲线通过实验点以强调变化趋势。从两图可看

Fig. 7 The dependence of the 1.54 μm fluorescence intensity upon the content of Er^{3^+}

出 随着 Er^{3+} 和 Yb^{3+} 浓度的增加,荧光强度先增加 然后减小, Yb^{3+} 最佳浓度远高于 Er^{3+} 的最佳浓度。 Yb^{3+} 最佳浓度约为 1.82×10^{21} ions/cm³,这与 Jiang 等最近的结果是相当一致的^[4]; Er^{3+} 最佳浓度约为 ($0.96 \sim 2.46$)× 10^{20} ions/cm³。

Fig. 8 The dependence of the 1.54 μm fluorescence intensity upon the content of Yb³⁺ in LiEr_{0.025} Yb_y L_{4(0.975-y)}P₄O₁₂ glass 正如图 3 所示 ,1.54 μm 激光上能级⁴ I_{13/2}上的粒子除了向⁴ I_{15/2}能级受激跃迁发出激光外 同时还将通过"协作"上转换^[7.8]、能量传递和激发态吸收

(ESA)进一步向高能级激发,这样一来就势必使 ⁴ I₁₃₂能级上的布居数减少 影响反转粒子数。这两 者之间是存在竞争的。随着 Er³⁺ 离子浓度的增加, Er³⁺ 离子间的"协作"上转换以及由于 Yb³⁺ 与 Er³⁺ 间进一步的能量传递而导致的 Er³⁺ 离子激发态吸 收过程都将增强⁴ I₁₃₂ 能级上的布居数反而可能减 少 从而出现了 $I_{13/2} \rightarrow I_{15/2}$ 荧光发射的浓度猝灭效 应 如图 7)。根据许多作者^[8,14]的简化速率方程模 型 ${}^{4}I_{13/2} \rightarrow {}^{4}I_{15/2}$ 荧光发射强度将随 Yb³⁺ 浓度的增 加而增强。然而 我们的实验结果并非完全如此 如 图 8)。随 Yb³⁺浓度增加,由于抽运光吸收效率及 能量传递1过程(图3)能量传递的增强,起初荧光 强度也增加。在四磷酸镱铒玻璃中,Yb³⁺的最佳浓 度为 1.82×10²¹ ions/cm³,而更大的 Yb³⁺ 浓度将减 小荧光发射量子效率。我们认为这可能是因为高的 Yb³⁺浓度将增加从 Er³⁺(⁴ I_{11/2}→⁴ I_{15/2})到 Yb³⁺ (²F_{7/2}→²F_{5/2})的反向能量传递速率,进而减少了 ${}^{4}I_{13/2}$ 能级的布居数。同时在如此高的 Yb^{3+} 浓度掺 杂时,Yb³⁺离子的分布不均匀、"离子对"及"簇"都 可能出现^[15,16]。从图 1 可以看到当 Yb³⁺ 离子为 2. 40×10^{21} ions/cm³ 时存在线性关系的偏离,这可能 也与这种 Yb³⁺ 的"离子对"或"簇"有关。

3.5 OH 基对 1.5 µm 荧光的影响

由于磷酸盐激光玻璃对水有很强的亲合力^[17], 因此磷酸盐玻璃中就可能有含量较高的 OH⁻,在没 有除水处理情况下,玻璃中残存的 OH⁻ 更多。OH 基对红外发射有很大的影响^[18,19],我们的实验结果 表明:Yb³⁺/Er³⁺体系即 1.54 μ m 荧光发射,未通氧 气与通氧气在荧光强度上差别很大,通气 60 min 的 LiEr_{0.025}Yb_{0.45}La_{0.425}P₄O₁₂玻璃其荧光强度要比未通 氧气样品强 3 倍之多。

图 9 是 Yb³⁺ 单掺玻璃红外透过光谱图,实线表 示通氧 60min,虚线表示未通氧气。从图中可以看 出 未通氢玻璃中 OH 基含量明显高干通氢玻璃样 品。由于玻璃中的 OH 基振动频率(2700 cm⁻¹~ 3700 cm⁻¹ 要比其它的结合键振动频率要高得多, 结果只需 2~3 个声子振动就可使4 I13/2 无辐射跃迁 到⁴ I_{15/2} 在图 3 中示意了 OH 的这种猝灭过程。因 此 OH 基是 1.54 μm 荧光发射强的猝灭剂 图 10 也 证明了这一点。图 10 表示了⁴ $I_{13/2}$ (Er³⁺)和² $F_{5/2}$ (Yb^{3+})能级衰减速率($1/\tau_m$)与 OH^- 带峰值吸收系 数 α_{он}的关系。可以看出,随着 OH⁻ 含量的增加 (OH⁻ 含量用 α_{OH}表示), F_{5/2}(Yb³⁺)及⁴ I_{13/2}(Er³⁺) 能级衰减速率增加(能级寿命都减小)。这样不仅从 Yb³⁺(²F_{5/2}→²F_{7/2})剤 Er³⁺(⁴I_{15/2}→⁴I_{11/2})的能量传 递效率下降 ,而且 Er³⁺ 离子⁴ I_{13/2}→⁴ I_{15/2}发射量子效 率也 将 减 小。 故 降 低 玻 璃 中 OH⁻ 含 量 是 保 证 Yb³⁺/Er³⁺体系 1.54 µm 激光性能的重要因素之

Fig. 10 The influence of OH content on the measured lifetime in $LiEr_{0.\,1}\,La_{0.\,9}\,P_4\,O_{12}$ and $LiYb_{0.\,45}\,La_{0.\,55}\,P_4\,O_{12}$ glasses

结论 1)相比 Er^{3+} 离子, Yb^{3+} 离子在 970 nm 处有 更大的吸收截面,且 $Yb^{3+}({}^{2}F_{5/2} \rightarrow {}^{2}F_{7/2})$ 到 Er^{3+} (${}^{4}I_{15/2} \rightarrow {}^{4}I_{11/2}$)的能量传递效率 η 很高(在 $LiEr_{0.025} Yb_{0.45} La_{0.525} P_4 O_{12}$ 玻璃中 η 达 95%),因此 Yb^{3+}/Er^{3+} 双掺比 Er^{3+} 单掺有强得多的荧光强度。

2)用 McCumber 理论计算出 Er^{3+} 离子在四磷酸盐 1.54 μ m 发射截面 σ_e 为 0.48 pm^2 。

3) 对 1.54 μ m 发射,在 Yb³⁺/Er³⁺掺杂四磷酸盐 玻璃中 Yb³⁺ 的最佳浓度约为 1.82×10²¹ ions/cm³, Er³⁺最佳浓度约为 0.96×10²⁰ ions/cm³。同时降低玻 璃中 OH⁻ 含量也是保证 Yb³⁺/Er³⁺体系 1.54 μ m 激 光性能的重要因素之一。

参考文献

- [1] Gapontsev V P, Mtisin S M, Isineev A A et al.. Erbium glass lasers and their applications. Opt. & Laser Technol., 1989, 14(4):189~196
- [2] Laporta P, Taccheo S, LonghiS et al.. Diode-pumped microchip Er-Yb:glass laser. Opt. Lett., 1993, 18(15): 1232~1234
- [3] MacFarlane D R, Javorniczky J, Newman P J et al.. High Et(3) content ZBN-glasses for microchip laser applications. J. Non-Cryst. Solids, 1997, 213 214(1-3):158~163
- [4] Taccheo S, Laporta P, Longhi S et al. Diode-pmped bulk erbium-ytterbium lasers. Appl. Phys. (B), 1996, 63 (5) 425~436
- [5] Ohtsuki T, Peyghambarian N, Honkanen S et al.. Gain characteristics of a high concentration Er³⁺-doped phosphate glass waveguide. J. Appl. Phys., 1995, 78 (6) 3617~3621
- $[\ 6\]$ Jiang S , Myers M J , Peyghambarian N. Er^{3^+} doped phosphate glasses and laser. J. Non-Cryst. Solids ,1998 , $239(\ 1-3\)$:143 \sim 148
- [7] Ohtsuki T, Hongkanen S, Najafi S I et al. Cooperative upconversion effects on the performance of Er³⁺-doped phosphate glass waveguide amplifiers. J. Opt. Soc. Am.

(*B*),1997,14(7):1838~1845

- [8] Hwang B C , Jiang S , Luo T et~al.. Characterization of cooperative upconversion and energy transfer of ${\rm Er}^{3+}$ and ${\rm Yb}^{3+}/{\rm Er}^{3+}$ doped phosphate glasses. Proc. SPIE , 1999 , 3622 :10 \sim 18
- [9]Qi Changhong, Gan Fuxi. Spectral properties of glassy tetraphosphate with high neodynium concentration. J. Laser , 1983, 9(4) $591 \sim 694$
- [10] Choi Y G, Kim K H, Heo J. Spectroscopic properties of and energy transfer in PbO-Bi₂O₃-Ga₂O₃ glass doped with Er₂O₃. J. Am. Ceram. Soc., 1999, 82(10):2762~ 2768
- [11] McCumber D E. Theory of phonon-terminated optical masers. Phys. Rev. (A), 1964, 134(2) 299~306
- [~12~] Miniscalco W J , Quimby R S. General procedure for the analysis of ${\rm Er}^{3^+}$ cross sections. Opt . Lett . , 1991 , 16 (4) 258 $\sim\!260$
- [13] Payne S A , Chase L L , Smith L K *et al* . . Infrared cross-section measurements for crystals doped with Er^{3^+} , Tm^{3^+} , and Ho^{3^+} . *IEEE J*. *Quant*. *Electron*. , 1992, **QE-28**(6) 2619~2630
- [14] Laporta P, Longhi S, Sorbello G et al.. Erbiumytterbium miniaturized lasers devices for optical communication. Proc. SPIE, 1999, 3622 82~91
- [15] Desurvire E. Erbium-Doped Fiber Amplifiers: Principles and Applications. New York: Wiley, 1992. 291
- [16] Wageber J L , Wysocki P F , Digonner M J F et al.. Effects of concentration and clusters in erbium-doped fiber lasers. Opt. Lett., 1993, 18(23) 2014~
- [17] 干福熹. 无机玻璃中 Nd³⁺ 的能量转移过程. 科学通报, 1978, **12(**):723~729; 1979, **2**:59~66
- [18] Ebendorff-Heidepriem H, Seeber W, Ehrt D. Spectroscopic properties of Nd³⁺ ions in phosphate glasses. J. Non-Cryst. Solids, 1995, 183(1,2):191~ 200
- [19] Snoeks E , Kik P G , Polman A. Concentration quenching in erbium implanted alkali silicate glasses. Opt. Mater., 1996, 5(1):159~167

Spectroscopic Properties of Er^{3+} and Yb^{3+}/Er^{3+} -Doped LaLiP₄O₁₂ Glasses

Zhang Long Lin Fengying Qi Changhong Hu Hefang

(Shanghai Institute of Optics and Fine Mechanics, The Chinese Academy of Sciences, Shanghai 201800) (Received 17 May 2000; revised 24 July 2000)

Abstract: The tetraphosphate glasses with Er^{3^+} and $\text{Yb}^{3^+}/\text{Er}^{3^+}$ dopant were prepared. The absorption and fluorescence emission spectra were measured, and the emission cross-section for ${}^4I_{13/2} \rightarrow {}^4I_{15/2}$ transition of Er^{3^+} was calculated by using McCumber theory. Spectroscopic properties, concentration quenching, and the effect of - OH groups on the emission at 1.54 μ m in these glasses were investigated with diode laser at 970 nm. The optimization of Yb³⁺ and Er³⁺ ion concentrations are 1.82×10^{21} ions/cm³ and 0.96×10^{20} ions/cm³ respectively in the glasses. **Key words**: Er^{3^+} -doped; Yb³⁺/Er³⁺-doped; tetraphosphste glass; spectroscopic properties